

MERI College of Engineering and Technology (MERI - CET)

Lesson Plan

Name of the Faculty	:	Mr. Sandeep Chhillar (Theory & Practical)
Discipline	:	Mechanical Engineering
Semester	:	5 th
Subject	:	Computer Aided Design & Manufacturing (PCC-ME-301G)
Lesson Plan Duration	ι:	15 Weeks (from Aug., 2020 to Nov., 2020)

** Work Load (Lecture/Practical) per week (in hours): Lectures-02, Practicals-01

Week	Theory			Practical		
	Lecture	Торіс	Days	s Topic		
	Day	(including assignment/test)				
1^{st}	1^{st}	Introduction: Introduction to	The students will be required to carry			
		CAD/CAM/CAE, Design Process	ou	t the following exercises using		
	2^{nd}	Importance and Necessity of	software packages			
		CAD, Applications of CAD		(e.g. Solid works / Pro		
			Eng	gineer/AutoCAD/ I-Deas/ Solid		
				Edge/CURA etc.)		
2^{nd}	3 rd	Hardware and Software	1^{st}	CAD Modeling Assignments		
		requirement of CAD		(i) Use and learn import/export		
	4^{th}	Fundamentals of Additive		techniques and customization of		
		Manufacturing (AM), Basic steps		software.		
		to perform AM		(11) Construction of simple		
		-		machine parts and components		
				Pulley Piston Connecting rod		
				nuts bolts gears and helical		
				springs		
				(iii) Assembly drawing with		
				sectioning and bill of materials		
				from given detailed		
				drawings of assemblies: Lathe		
				Tail stock, Machine vice,		
				Pedestal bearing, Drill jigs		
				and Milling fixture.		
				(iv) Make the part family/family		
				table of a bolt.		

MERI College of Engineering and Technology (MERI - CET)

00001011120				
3 rd	5^{th}	Classification of	2^{nd}	CAM Assignments Tool path
		AM, Applications of AM:		generation, Part programming,
		Aerospace, Biomedical,		G & M codes
		Automotive, Bio-printing		development for machining
	6 th	Tissue &		operations, Physical
		Organ Engineering, Architectural		interpretation of machining
		Engineering, Surgical simulation,		features
		Art, Health care		and tool geometries.
4 th	7^{th}	Basics of geometric and solid	3 rd	To perform reverse
		modeling, coordinate systems.		engineering of a product using
		Transformations: Introduction,		3D scanner.
		transformation of points and line		
	8^{th}	2-D rotation, reflection, scaling		
		and combined		
		transformation, homogeneous		
		coordinates		
5 th	9^{th}	3-D scaling, shearing, rotation,	4 th	To print coupling, crankshaft,
		reflection and		pulley, piston, connecting rod,
		translation, combined		nuts, bolts with FDM 3D
		transformations		printer with suitable filament
	10^{th}	Curves: Algebraic and geometric		like Nylon, ABS etc.
		forms,		
		reparameterization		
6^{th}	11 th	Analytical and Synthetic curves,	5 th	To print a product with FDM
		cubic splines, Bezier curves and		3D printer which is developed
		B-spline		with reverse engineering.
		curves.		
	12^{th}	Surfaces and Solids: Plane		
		surface, ruled surface, surface of		
		revolution		
7^{th}	13^{th}	Surfaces and Solids: Plane	6 th	To Draw Orthographic Projection
		surface, ruled surface, surface of		Drawings (Front, Top and side)
		revolution		of boiler safety valve
	14^{th}	Surfaces and Solids: Plane		giving name the various
		surface, ruled surface, surface of		components of the valve.
		revolution		
8^{th}	15 th	Surfaces and Solids: Plane	7 th	Make an Isometric dimensioned
		surface, ruled surface, surface of		drawing of a connecting Rod
		revolution		using isometric grid and snap
	16^{th}	Finite Element Method:	1	
		Introduction, Procedure		

MERI College of Engineering and Technology (MERI - CET)

50331011. 20	20 21			
9^{th}	17^{th}	Finite Element Method:	8^{th}	raw 3D models by extruding
		Introduction, Procedure		simple 2D objects, dimension and
	18^{th}	Analysis of 1D, 2D structural		name the objects
		problems		
10^{th}	19 th	Analysis of 1D, 2D structural		
		problems		
	20^{th}	Difference between machining		
		and additive manufacturing.		
11 th	21^{th}	Photo polymerization Processes,		
		Powder bed fusion processes		
	22^{nd}			
		Extrusion Based systems		
12^{th}	23^{rd}	Printing Processes, Effects of		
		significant parameters		
	24^{th}	Flexible Manufacturing Systems		
		& Computer aided process		
		planning: Introduction		
13 th	25^{th}	FMS		
		components, types of FMS		
	26^{th}	FMS layouts, planning for FMS,		
		advantages and applications		
14^{th}	27^{th}	Conventional process planning,		
		types of CAPP		
	28^{th}	Steps in variant process planning,		
		planning		
		for CAPP.		